Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Nat Commun ; 13(1): 5168, 2022 09 07.
Article in English | MEDLINE | ID: covidwho-2008272

ABSTRACT

The problem of Lip-reading has become an important research challenge in recent years. The goal is to recognise speech from lip movements. Most of the Lip-reading technologies developed so far are camera-based, which require video recording of the target. However, these technologies have well-known limitations of occlusion and ambient lighting with serious privacy concerns. Furthermore, vision-based technologies are not useful for multi-modal hearing aids in the coronavirus (COVID-19) environment, where face masks have become a norm. This paper aims to solve the fundamental limitations of camera-based systems by proposing a radio frequency (RF) based Lip-reading framework, having an ability to read lips under face masks. The framework employs Wi-Fi and radar technologies as enablers of RF sensing based Lip-reading. A dataset comprising of vowels A, E, I, O, U and empty (static/closed lips) is collected using both technologies, with a face mask. The collected data is used to train machine learning (ML) and deep learning (DL) models. A high classification accuracy of 95% is achieved on the Wi-Fi data utilising neural network (NN) models. Moreover, similar accuracy is achieved by VGG16 deep learning model on the collected radar-based dataset.


Subject(s)
COVID-19 , Masks , COVID-19/prevention & control , Humans , Lipreading , Neural Networks, Computer , Personal Protective Equipment
2.
J Pharm Anal ; 12(2): 193-204, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1720475

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which caused the coronavirus disease 2019 (COVID-19) pandemic, has affected more than 400 million people worldwide. With the recent rise of new Delta and Omicron variants, the efficacy of the vaccines has become an important question. The goal of various studies has been to limit the spread of the virus by utilizing wireless sensing technologies to prevent human-to-human interactions, particularly for healthcare workers. In this paper, we discuss the current literature on invasive/contact and non-invasive/non-contact technologies (including Wi-Fi, radar, and software-defined radio) that have been effectively used to detect, diagnose, and monitor human activities and COVID-19 related symptoms, such as irregular respiration. In addition, we focused on cutting-edge machine learning algorithms (such as generative adversarial networks, random forest, multilayer perceptron, support vector machine, extremely randomized trees, and k-nearest neighbors) and their essential role in intelligent healthcare systems. Furthermore, this study highlights the limitations related to non-invasive techniques and prospective research directions.

3.
Pakistan Armed Forces Medical Journal ; _(COVID-19 (1)), 2020.
Article in English | ProQuest Central | ID: covidwho-1380274

ABSTRACT

ABSTRACT COVID-19 is pandemic across the world and with ever growing number of cases in Pakistan, information regarding its transmission, diagnosis and treatment is very important. Dentists are very vulnerable to corona virus infection as shown by WHO data. So it is very important to take stringent preventive measures and only deal dental emergencies to minimize risk to dental health care workers.

4.
IEEE Sens J ; 21(18): 20833-20840, 2021 Sep 15.
Article in English | MEDLINE | ID: covidwho-1334361

ABSTRACT

Contactless or non-invasive technology has a significant impact on healthcare applications such as the prediction of COVID-19 symptoms. Non-invasive methods are essential especially during the COVID-19 pandemic as they minimise the burden on healthcare personnel. One notable symptom of COVID-19 infection is a rapid respiratory rate, which requires constant real-time monitoring of respiratory patterns. In this paper, Software Defined Radio (SDR) based Radio-Frequency sensing technique and supervised machine learning algorithm is employed to provide a platform for detecting and monitoring various respiratory: eupnea, biot, bradypnea, sighing, tachypnea, and kussmaul. The variations in Channel State Information produced by human respiratory were utilised to identify distinct respiratory patterns using fine-grained Orthogonal Frequency-Division Multiplexing signals. The proposed platform based on the SDR and the Deep Multilayer Perceptron classifier exhibits the ability to effectively detect and classify the afore-mentioned distinct respiratory with an accuracy of up to 99%. Moreover, the effectiveness of the proposed scheme in terms of diagnosis accuracy, precision, recall, F1-score, and confusion matrix is demonstrated by comparison with a state-of-the-art machine learning classifier: Random Forest.

5.
IEEE Sens J ; 21(15): 17180-17188, 2021 Aug 01.
Article in English | MEDLINE | ID: covidwho-1238341

ABSTRACT

The exponential growth of the novel coronavirus disease (N-COVID-19) has affected millions of people already and it is obvious that this crisis is global. This situation has enforced scientific researchers to gather their efforts to contain the virus. In this pandemic situation, health monitoring and human movements are getting significant consideration in the field of healthcare and as a result, it has emerged as a key area of interest in recent times. This requires a contactless sensing platform for detection of COVID-19 symptoms along with containment of virus spread by limiting and monitoring human movements. In this paper, a platform is proposed for the detection of COVID-19 symptoms like irregular breathing and coughing in addition to monitoring human movements using Software Defined Radio (SDR) technology. This platform uses Channel Frequency Response (CFR) to record the minute changes in Orthogonal Frequency Division Multiplexing (OFDM) subcarriers due to any human motion over the wireless channel. In this initial research, the capabilities of the platform are analyzed by detecting hand movement, coughing, and breathing. This platform faithfully captures normal, slow, and fast breathing at a rate of 20, 10, and 28 breaths per minute respectively using different methods such as zero-cross detection, peak detection, and Fourier transformation. The results show that all three methods successfully record breathing rate. The proposed platform is portable, flexible, and has multifunctional capabilities. This platform can be exploited for other human body movements and health abnormalities by further classification using artificial intelligence.

6.
Sensors ; 20(19):5665, 2020.
Article | MDPI | ID: covidwho-813270

ABSTRACT

COVID-19, caused by SARS-CoV-2, has resulted in a global pandemic recently. With no approved vaccination or treatment, governments around the world have issued guidance to their citizens to remain at home in efforts to control the spread of the disease. The goal of controlling the spread of the virus is to prevent strain on hospitals. In this paper, we focus on how non-invasive methods are being used to detect COVID-19 and assist healthcare workers in caring for COVID-19 patients. Early detection of COVID-19 can allow for early isolation to prevent further spread. This study outlines the advantages and disadvantages and a breakdown of the methods applied in the current state-of-the-art approaches. In addition, the paper highlights some future research directions, which need to be explored further to produce innovative technologies to control this pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL